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Abstract

Thesis title: Quantum vortices in two-dimensional ultracold atomic gases

Quantum vortices play a central role in the two-dimensional physics of ultracold gases and are

typically well-described within the mean-field framework. In this thesis, we investigate the emer-

gence of vortices in the eigenstates of the N -body Hamiltonian for interacting bosons confined

to a disk. Our approach is inspired by earlier studies connecting solitons to yrast states in

one-dimensional systems. The analysis is based on conditional states obtained by sequentially

measuring particle positions, revealing both the density and phase profiles characteristic of a

quantum vortex—albeit with quantum fluctuations in the vortex core position. This many-body

perspective is further supported by a Bogoliubov analysis, providing insight into condensate

depletion and excitation modes.
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Streszczenie

Tytuł pracy: Kwantowe wiry w dwuwymiarowych ultrazimnych gazach atomowych

Wir kwantowy odgrywa kluczową rolę w dwuwymiarowej fizyce ultrazimnych gazów i zazwyczaj

jest dobrze opisywany w przybliżeniu średniego pola. W niniejszej pracy badamy pojawianie się

wirów w stanach własnych hamiltonianu układu N oddziałujących bozonów, ograniczonych do

dysku. Nasze podejście inspirowane jest wcześniejszymi badaniami łączącymi solitony ze stanami

yrast w układach jednowymiarowych. Analiza opiera się na stanach warunkowych, uzyskanych

poprzez sekwencyjny pomiar położeń cząstek, które ujawniają zarówno rozkład gęstości, jak i

fazy typowy dla wiru kwantowego — jednak z uwzględnieniem fluktuacji kwantowych położenia

rdzenia wiru. To podejście wielu ciał uzupełnione jest analizą metodą Bogoliubova, dostarczając

informacji o ubytku kondensatu oraz o modach wzbudzeń.

Słowa kluczowe:

wiry kwantowe, ultrazimne gazy
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Chapter 1

Introduction
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Describing quantum systems using the fundamental many-body Schrödinger equation is often too

complex, impractical, or even impossible. As a result, simpler methods—particularly mean-field

approaches—have been employed to study systems of interacting particles. These methods have

successfully captured a variety of phenomena. For instance, in one-dimensional systems of inter-

acting bosons, one can study dark solitons: localized dips in density that travel uniformly through

the bulk. These are solutions to the nonlinear, time-dependent mean-field Gross-Pitaevskii equa-

tion.

However, in principle, such solitonic behavior should also be describable within the framework

of the linear many-body Schrödinger equation. This is exemplified by the Lieb-Liniger model,

which describes a one-dimensional gas of bosons with periodic boundary conditions and delta-

function interactions. This model has been solved analytically [1, 2], and certain classes of its

solutions bear resemblance to dark solitons [3]. The potential connection between these solutions

and solitons has inspired further investigations [4, 5], which revealed that solitons emerge from

many-body solutions through a mechanism of symmetry breaking—specifically, by "measuring"

a subset of particle positions.

The main goal of this thesis is to further explore how structures known from mean-field theory

emerge in exact many-body solutions. Our focus shifts from solitons to quantized vortices,

topological defects that are well-understood within the mean-field framework.

Quantized vortices play a crucial role in various phenomena observed in superfluids, in particular

in ultracold atoms – the system we focus on in this master thesis. In two-dimensional systems,

vortices form lattice structures [6] or participate in phase transitions such as the Berezinskii-

Kosterlitz-Thouless transition [7, 8, 9], where the system shifts from bound vortex-antivortex

pairs at low temperatures to unbound defects above a critical temperature. In three dimensions,

vortices appear as vortex lines around which superfluid rotation occurs, leading to phenomena

like quantum turbulence [10], where tangled vortex lines resemble a complex web. These patterns

offer insights into decay mechanisms and hydrodynamic behavior in atomic gases.

To study vortices in a many-body setting, we adopt a similar strategy to that used for solitons.

We model a two-dimensional gas of interacting bosons with short-range interactions, represented

by a narrow Gaussian potential. The atoms are confined to a disk-shaped trap (see Figure 1.1),

which ensures conservation of total angular momentum. This allows us to focus on a class of

excited states with the lowest energy for a given angular momentum—known as yrast states.

Unlike the one-dimensional case with delta-function interactions, no analytical solutions exist

in this setup, so we rely on numerical methods. We solve the many-body problem via exact

diagonalization with importance truncation [11].

To reveal vortex structures, we again use symmetry breaking through the "measurement" of

particles positions in the yrast state. We find that vortices emerge at random locations away

from the center of the disk, yet they exhibit dynamical stability. This stability is confirmed by

evolving the system using the time-dependent mean-field equations.

10



In Chapter 2, we begin with an overview of both many-body and mean-field approaches for

interacting bosons. We also review how solitons have been identified in 1D many-body systems

and introduce the concept of quantum vortices within the Gross-Pitaevskii framework. Chapter

3 presents our two-dimensional model and the theoretical tools used for its analysis. Chapter 4

outlines the computational methods, with particular emphasis on importance truncation in exact

diagonalization. Our main findings are presented in Chapter 5, followed by concluding remarks

in Chapter 6.

ρ φ

Figure 1.1: Abstract
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Chapter 2

Theory
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This chapter provides a brief overview of the quantum mechanicalN -body problem for interacting

indistinguishable particles, specifically bosons, and introduces the Gross–Pitaevskii equation. We

explain the concept of solitons and how they emerge from many-body solutions. Before turning

to quantum vortices, we introduce the notion of the conditional wave function—a key tool in

which vortices will later be identified.

2.1 Many body problem

In the quantum mechanics, the state of an N -particle system if fully characterized by its N -

particle wave function

Ψ = Ψ(r1, . . . , rN , t), (2.1)

where |Ψ(r1, . . . , rN , t)|2 is the probability density of finding the first particle at r1, the second

at r2, and so on, at time t. The time dependence of the wave function is governed by the

time-dependent Schrödinger equation

iℏ
∂

∂t
Ψ(r1, . . . , rN , t) = ĤΨ(r1, . . . , rN , t), (2.2)

where Ĥ is the Hamiltonian operator. In this work, we restrict ourselves to Hamiltonians of the

form

Ĥ =
N∑
i=1

(
− ℏ2

2m
∇2

i + Vex(ri)

)
+

1

2

∑
i ̸=j

V (|ri − rj |), (2.3)

where Vex(r) is an external potential, and V (r) is an interaction potential that depends only

on the distance between the particles. For indistinguishable particles the probabilities should

be independent of the permutation of particles. Moreover, exchanging two particle positions ri

and rj twice must leave the wave function unchanged. This implies that the wave function must

transform under particle exchange according to

Ψ(. . . , ri, . . . , rj , . . . ) = ±Ψ(. . . , rj , . . . , ri, . . . ). (2.4)

Particles whose wave function are symmetric (with the plus sign) are called bosons, while those

with antisymmetric wave functions (minus sign) are fermions. In this thesis we focus on bosons.

A primary method for understanding such systems is through their stationary states, described

by the time independent Schrödinger equation

ĤΨ(r1, . . . , rN , t) = EΨ(r1, . . . , rN , t), (2.5)

where E is the total energy of the system.

The full N -particle wave function Ψ is generally difficult to analyze directly. One useful quantity

that provides insight is the single particle density matrix (SPDM)

ρ(r, r′) = N

∫
Ψ∗(r′, r2, . . . , rN )Ψ(r, r2, . . . , rN ) dr2 · · · drN , (2.6)

whose diagonal

ρ(r) = ρ(r, r) (2.7)

14



gives the average particle density at position r.

Directly solving Eq. (2.5) is difficult or impractical task, or in many cases even impossible and

one has to employ different methods of approximation. For the symmetric wave function of

bosons, one of the simplest approaches is to postulate the form of a wave function as if all the

particles were lying in the same single-particle state ϕ(r) and the wave function is then given by

the product

ΨGP(r1, . . . , rN ) =

N∏
i=1

ϕ(ri). (2.8)

When we calculate the energy of a state described by the wavefunction given in the form ΨGP,

that is ⟨ΨGP|Ĥ|ΨGP⟩, we obtain the energy functional dependent on the ϕ in the form

E [ϕ] = N

∫
ϕ∗
(
− ℏ2

2m
∇2

)
ϕ dr +

1

2
N(N − 1)

∫∫
|ϕ(r)|2V (|r − r′|)|ϕ(r′)|2 dr dr′. (2.9)

One can minimize this functional with the constraint on the normalization
∫
|ϕ|2 = 1, using the

Lagrange multiplier Nµ. Then, the variation δ(E −Nµ
∫
|ϕ|2) = 0 with respect to ϕ∗ yields the

equation (
− ℏ2

2m
∇2 + Vex(r) + VMF(r)

)
ϕ(r) = µϕ(r), (2.10)

where we introduce the mean-field potential

VMF(r) = (N − 1)

∫
V (|r − r′|)|ϕ(r′)|2 dr′. (2.11)

The quantity µ is called the chemical potential. The Eq. (2.10) is known as the time independent

Gross-Pitaevskii equation, which we marked using the subscript GP in Eq. (2.8). Although above

equation looks very similar to the Schrödinger equation, it is nonlinear as can be seen from the

mean-field potential which is dependent on ϕ. Energy can be calculated from Eq. (2.9) (note

that E[ϕ] ̸= µ), while the density of particles is simply given by N |ϕ(r)|.

Mean-field can also be used in the time dependent case, where one uses the time-dependent

principle of least action [12] to obtained the equation of motion, namely the time dependent

Gross-Pitaevskii equation

iℏ
∂

∂t
ϕ(r, t) =

(
− ℏ2

2m
∇2 + Vex(r) + VMF(r, t)

)
ϕ(r, t). (2.12)

We will be considering the N -body problem using the Hamiltonian in (2.3), and examine the

connection between its excited states eigenstates and the solutions of the time-dependent mean-

field equation (2.12). This relationship has previously been explored in the context of solitons,

which are localized excitations in one-dimensional systems.

2.2 Solitons

One of the simplest exactly solvable models of interacting quantum particles is the Lieb-Liniger

model [1, 2], which describes a one-dimensional system of bosons with periodic boundary condi-

tions. The interaction potential is given by V (x) = gδ(x), where the parameter g controls the
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Figure 2.1: Scheme showing energies of type I and type II excitations [2, 1] as functions of the momentum k.

interaction strength. The corresponding Hamiltonian takes the form

ĤLL = − ℏ2

2m

N∑
i=1

∂2

∂x2
+
g

2

∑
i ̸=j

δ(|xi − xj |). (2.13)

This model admits an exact analytical solution via the Bethe ansatz, which reduces the problem

of finding eigenstates to solving a set of transcendental equations. The eigenstates are labeled

by a set {Ik}Nk=1 with Ij being integers if N is odd, or half-integers for even N . The ground state

is obtained by choosing a consecutive set centered around zero: {Ik} = {−(N − 1)/2,−(N −
1)/2 + 1, . . . .(N − 1)/2}.

Excitations of the system can be generated by modifying these quantum numbers. In particular,

type I excitations arise by increasing the magnitude of the outermost quantum number—these

excitations correspond to the Bogoliubov spectrum. On the other hand, type II excitations, also

known as one-hole excitations, involve removing an Ik from within the ground state configuration

and placing it just outside the contiguous band, such as at −(N − 1)/2 − 1 or (N − 1)/2 + 1.

Sketches of both excitation spectra are shown in Fig. 2.1.

While type I excitations were immediately identified with the Bogoliubov spectrum, it was only

years later that type II excitations were found to be related to dark solitons, through a com-

parison of their dispersion relations [3]. A dark soliton is nonlinear, localized excitation known

from mean-field theory, where it appears as a solutions to the time-dependent Gross-Pitaevskii

equation. In the case of δ-type interaction, the equation takes on a particularly simple form

iℏ
∂

∂t
ϕ(x, t) =

(
− ℏ2

2m

∂2

∂x2
+ g(N − 1)|ϕ(x,t)|2

)
ϕ(x, t). (2.14)

Dark solitons are characterized by a local dip in density that propagates without dispersion,

accompanied by a rapid phase shift. When the density at the center of the dip vanishes entirely,

the soliton is termed black; otherwise it is referred to as a gray soliton. (see Fig. 2.2).

However, identifying soliton-like features in the exact many-body eigenstates of the Lieb-Liniger

model is nontrivial. Due to translational invariance, the diagonal of the single-particle density

matrix ρ(x) is uniform, and so no features are visible. Moreover, direct access to the phase profile

is not possible from ρ(x) alone.
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Figure 2.2: Examples of a black soliton (black solid line) and a grey soliton (grey dashed line). The left panel

shows the density profile, while the right panel displays the phase of the macroscopic orbital. A characteristic

feature of solitons is the sharp phase variation at their center; in the case of the black soliton, this manifests as a

phase jump of π, indicating a discontinuity.

An approach to solve this issue was performed in [4], where the authors used the concept of a

conditional wave function, defined as

ψcond(x) = ψ(x̄1, x̄2, . . . , x̄N−1, x), (2.15)

in which x̄1, . . . , x̄N−1 are fixed particle positions obtained by sequential measurements. This

effectively reduces the many-body wave function to a single-particle function of x, allowing one to

probe its spatial and phase structure. A more detailed description of this measurement procedure

is provided in the next chapter.

When applied to type II excitations of the Lieb-Liniger model, this conditional wave function

reveals both the density depletion and phase jump characteristic of a dark soliton. This approach

has also been extended to investigate soliton dynamics [13] and soliton-like features in the non-

interacting limit [14].

Solutions to the N -body problem have been shown to correspond to one-dimensional objects

known as solitons. This type of analysis can be naturally extended to two dimensions, where the

counterparts of solitons are quantum vortices. The investigation of this correspondence forms

the central focus of this thesis.

2.3 Quantum vortices

An important structure that arises in two dimensions is the quantum vortex, which will be the

primary focus of this thesis. The main objective is to identify vortices within the many-body

wave function using the same approach employed in the soliton case—namely, the analysis of the

conditional wave function.

Quantum vortex could be explained in the mean-field framework, where one considers the macro-

scopic orbital ϕ(r, t), a complex-valued function that can be decomposed into two real-valued

functions as

ϕ(r, t) =
√
n(r, t)eiθ(r,t), (2.16)
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where n(r, t) ≥ 0 represents the density and θ(r, t) is the phase.

To understand the notion of a vortex, consider the phase function θ, a starting point r, and a

closed path Γ that loops around and returns to r (see Fig. 2.3). Since ϕ is single-valued, its

phase must change by an integer multiple of 2π upon completing the loop. Mathematically, this

is expressed as: ∫
Γ
∇(θ) · dl = 2πq, (2.17)

where q ∈ Z. A point around which this phase winding is nonzero (q ̸= 0) is identified as the

vortex core, and q is referred to as the vortex charge.

r

Γ

n ϴ

Figure 2.3: Left: density n, and right: phase θ, of a quantized vortex in the mean-field orbital ϕ. In the core of

the vortex the density drops to zero and the phase changes around that point by 2π.

At the vortex core, the density n drops to zero, while the phase θ changes rapidly in its vicinity.

In practice, for infinitesimally small loops, q typically takes the values −1, 0, or 1, as it is

energetically more favorable—due to interactions—for the system to support multiple vortices

with the lowest possible charge rather than a single vortex with higher charge.

The subsequent chapters will address the challenge of detecting vortices in the many-body wave

function, guided by the insights provided by mean-field theory.
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This chapter is devoted to formulating the model of the system in which we search for vortices. We

begin by introducing the second quantization formalism used to describe the many-body problem.

Next, we present the model interaction potential chosen for the system and explain its key

properties. The chapter concludes with a brief overview of the number-conserving Bogoliubov–de

Gennes method, a many-body approach based on the assumption that most of the atoms occupy

the mean-field orbital.

3.1 Many-body problem

In the one-dimensional case—particularly within the Lieb-Liniger model—an important con-

served quantity is total momentum of the systems. Solitons have been associated with type II

excitations, which can be understood as excitations where momentum is added to particles in

the ground state and distributed uniformly across a few of them. Thus, momentum emerges as

the key quantity of interest in this context.

In our investigation of vortices in two dimensions, a natural analogue to momentum is the total

angular momentum of the system, and so we chose a model in which angular momentum is

conserved. We consider a system of interacting particles confined to a disc of radius R—that is,

particles in a two-dimensional plane subject to an external potential of the form:

Vex(r) =

0 if |r| < R,

+∞ if |r| > R.
(3.1)

When considering a single particle in this system, the Schrödinger equation in polar coordinates

takes the form:

− ℏ2

2m

(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2
∂2

∂θ2

)
ϕi(r, θ) = Eiϕi(r, θ), (3.2)

where r denotes the radial distance from the center of a disc and θ is the azimuthal angle.

The external potential (3.1) is implemented as a hard-wall boundary condition: ϕi(R, θ) = 0.

Outside the disc (i.e., for r > R), the wave function vanishes ϕ(r, θ) = 0. The quantum number

i ≥ 0 indexes the eigenstates in order of increasing energy energy: E0 ≤ E1 ≤ E2 ≤ · · · .

The solution of (3.2) are obtained via separation of variables and take the form:

ψi(r) = fi(r)e
imiθ, (3.3)

where mi ∈ Z is the angular momentum quantum number. The radial part of the wave function

is given by the Bessel function of the first kind:

fi(r) = AiJmi

(
αi
r

R

)
, (3.4)

where the normalization constant Ai is

Ai =
∣∣R√πJmi+1(αi)

∣∣− 1
2 . (3.5)
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0 R
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0

1

2

A j
J m

j(
jr/

R )

mj = 0

0 R

mj = 1

Figure 3.1: Radial part fi(r) of the single particle wave function. For the angular momentum mℏ those are

given by the m-th Bessel functions of the first kind, rescaled by consecutive zeros of the Bessel function, so that

fi(R) = 0.

αi is a positive real number corresponding to a zero of the mi-th Bessel function. This ensures

the boundary condition fi(R) = 0 is satisfied. The correspond energy eigenvalue is:

Ei =
ℏ2α2

i

2mR2
. (3.6)

Examples of the radial functions fi(r) are shown in Fig. 3.1. While it is common to label

these eigenstates with two quantum numbers—m, representing the angular momentum, and k,

indicating the k-th zero of the m-th Bessel function—for clarity, we use a single index i to

enumerate the states. Each i corresponds to a specific pair (mi, αi), where mi denotes the

angular momentum and αi is a particular zero of Jmi .

The system of interacting particles is described by the many-body Hamiltonian

Ĥ =
N∑
i=1

(
− ℏ2

2m
∇2

i + Vex(ri)

)
+

1

2

∑
i ̸=j

V (|ri − rj |), (3.7)

and we have to solve the eigenproblem ĤΨ = EΨ finding the energies E and many body wave

function Ψ(r1, . . . , rN ).

In one dimension, and with a contact interaction modeled by a Dirac delta potential, analogous

problem was solved analytically in the work of Lieb and Liniger [1, 2]. However, in two dimen-

sions, exact solutions are generally not available, and numerical methods are required. In this

context, it is convenient to reformulate the problem in the framework of second quantization,

where the state of the system is described in the abstract Fock space, spanned by occupation

number states |n⟩, with n = (n0, n1, n2, . . .).

Each integer ni ≥ 0 denotes the number of particles occupying the single-particle orbital ϕi, and

the total number of particles is
∑

i ni = N . A general quantum state in Fock space is a linear

combination of theses occupation states:

|Ψ⟩ =
∑
n

Cn|n⟩, (3.8)
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with the normalization condition
∑

|Cn|2 = 1.

Since we are dealing with bosons, the wave function must be symmetric under particle exchange.

The basis wave functions in the position-representation ⟨r1, . . . , rN |n⟩ can be expressed using

the matrix permanent:

⟨r1, . . . , rN |n⟩ = 1√
N !n1!n2! . . .

perm


ϕa1(r1) · · · ϕaN (r1)

...
. . .

...

ϕa1(rN ) · · · ϕaN (rN )

 . (3.9)

where the indices a1 ≤ · · · ≤ aN are the occupied orbitals, with each index repeated according

to the number of particles in the corresponding orbital. The position-space representation of

arbitrary state is then

Ψ(r1, . . . , rN ) = ⟨r1, . . . , rN |Ψ⟩ =
∑
n

Cn⟨r1, . . . , rN |n⟩. (3.10)

We introduce the annihilation âi and creation â†i operators, which act on the states in the Fock

space and satisfy the canonical bosonic commutation relations:

[âi, â
†
j ] = δij , [âi, âj ] = [â†i , â

†
j ] = 0. (3.11)

Their action on an occupation number state |n⟩ are given by:

âi|n0, n1, . . . , ni, . . .⟩ =
√
ni|n0, n1, . . . , ni − 1, . . .⟩, (3.12)

â†i |n0, n1, . . . , ni, . . .⟩ =
√
ni + 1|n0, n1, . . . , ni + 1, . . .⟩. (3.13)

Using these operators, the many-body Hamiltonian can be written in second quantized form as

Ĥ =
∑
j

Ej â
†
j âj +

1

2

∑
ijkl

Vijklâ
†
i â

†
j âlâk, (3.14)

where Ej are the single-particle energies defined in Eq. (3.6), and the interaction coefficients Vijkl
are given by the integrals

Vijkl =

∫∫
ϕ∗i (r)ϕ

∗
j (r

′)V (|r − r′|)ϕk(r′)ϕl(r) dr dr′. (3.15)

We also define the number operator n̂i = â†i âi, which counts the number of particles in orbital i.

It satisfies n̂i|n⟩ = ni|n⟩. The total number of particles operator is then

N̂ =
∑
i

n̂i. (3.16)

It is straightforward to verify that N̂ commutes with the Hamiltonian, i.e., [Ĥ, N̂ ] = 0, which

expresses the particle number conservation. Therefore, when solving the eigenvalue problem

Ĥ|Ψ⟩ = E|Ψ⟩, (3.17)
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we can restrict our attention to the subspace with a fixed number of particles N . Further details

regarding the numerical solution of Eq. (3.17) are presented in the chapter on numerical methods.

In addition to the energy, an important quantity characterizing a quantum many-body system

is the particle density. We obtain it from the diagonal of the single particle density matrix (2.7).

It is appropriate to use the field annihilation operator

ψ̂(r) =
∑
i

ψi(r)âi (3.18)

and its hermitian conjugate, the field creation operator

ψ̂†(r) =
∑
i

ψ∗
i (r)â

†
i . (3.19)

In the second-quantized formalism, the single-particle density matrix can then be written in the

form:

ρ(r, r′) =
〈
ψ̂†(r′)ψ̂(r)

〉
, (3.20)

where the expectation value is taken with respect to the many-body state |Ψ⟩. By expanding the

field operator in a single particle basis {ϕi}, we obtain a form suitable for numerical computation

ρ(r, r′) =
∑
ij

ϕ∗i (r
′)ϕj(r)⟨â†i âj⟩. (3.21)

The density matrix can be diagonalized via an eigenvalue decomposition

ρ(r, r′) = N
∑
i

λiϕ̃
∗
i (r

′)ϕ̃i(r), (3.22)

where the Nλi ≥ 0 are the occupation numbers, normalized such that
∑

i λi = 1, and ϕ̃i the

corresponding orbitals.

Following the criterion of Penrose and Onsager [15], a system is said to undergo Bose-Einstein

condensation if one of the eigenvalues, say λ0, is of the order of unity (i.e., macroscopically

occupied). In this case, the system is predominantly condensed in the orbital ϕ̃0.

3.2 Interaction

In one-dimensional systems, a common choice for modeling interactions is the Dirac delta func-

tion, δ(x). However, extending this approach directly to two dimensions introduces significant

complications.

When solving the many-body eigenproblem via the variational principle, one typically employs

a truncated Fock space and expects that, as the basis size increases, the results converge—that

is, they become independent of the cutoff. This convergence generally indicates that the basis

adequately captures the systems physics.

Unfortunately, when using the Dirac delta interaction in two dimensions, the calculations exhibit

slow divergence as the basis is enlarged. No finite cutoff leads to convergence of the results. This
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issue stems from the singular nature of the delta function in higher dimensions, which makes the

problem ill-posed unless appropriate regularization is applied (see, e.g., [16, 17]). Alternatively,

the interaction strength must be renormalized as a function of the basis size to maintain consistent

results [18].

In this thesis, a different approach is adopted: replacing the Dirac delta interaction with a

Gaussian potential of the form

V (r) =
g

σ2π
er

2/σ2
, (3.23)

where g denotes the interaction strength and σ characterizes the width of the potential. The

Gaussian provides a smooth, short-range interaction that avoids the singularity and ensures

numerical convergence.

To ensure that the Gaussian mimics a contact-like interaction while remaining well-behaved nu-

merically, the width σ is chosen to be smaller that the average interparticle distance. For a

system of N = 6 particles confined within a disk of radius R, a width of σ = 0.1R is used. Esti-

mating the average interparticle distance as
√
πR2/6 ≈ 0.72R, we find that σ is approximately

seven times smaller than this distance confirming that the interaction is sufficiently short-ranged

for our purposes.

Now, with the potential determined, we have to calculate the elements Vijkl that appear in the

Hamiltonian (3.14). Substituting the Gaussian potential into the general expression (3.15) yields

the following double integral (see Appendix A for derivation)

Vijkl = δ
mi+mj

mk+ml

∫∫
rr′fi(r)fj(r

′)fk(r)fl(r
′)
4πg

σ2
e−

r2+r′2
σ2 I|mi−mk|

(
2rr′

σ2

)
dr dr′, (3.24)

where Ik(x) is the modified Bessel function of the first kind, and fi(r) is the radial part of the

single-particle orbital ϕi.

The Kronecker delta δmi+mj

mk+ml
enforces conservation of angular momentum in the interaction pro-

cess. The angular momentum operator,

L̂z = ℏ
∑
i

min̂i, (3.25)

commutes with both Hamiltonian Ĥ and particle number operator N̂ . Consequently, the eigen-

value problem Ĥ|Ψ⟩ = E|Ψ⟩ can be solved within a subspace of fixed total particle number and

total angular momentum.

3.3 Bogoliubov-de Gennes

In the mean-field approach, a strong simplifying assumption is made: all particles occupy a

single-particle orbital ϕ(r). For stationary systems, this orbital satisfies the equation(
− ℏ2

2m
∇2 + Vex(r) + VMF(r)

)
ϕ(r) = µϕ(r), (3.26)
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which is known as the Gross-Pitaevskii equation. This framework can be extended using the

number conserving Bogoliubov–de Gennes approach, originally developed by Yvan Castin [19, 12].

This extension relaxes the assumption that all particles occupy the mode ϕ(r), instead positing

that the majority do. Within this more refined treatment, the field operator is decomposed as

follows:"

ψ̂(r) = ϕ(r)âϕ + δψ̂(r), (3.27)

where âϕ annihilates a particle in the orbital ϕ(r), and δψ̂(r) accounts for modes orthogonal to ϕ,

satisfying the condition
∫
ϕ∗δϕ̂ = 0. The mean-field approximation is valid when the occupation

number operator n̂ϕ = â†ϕâϕ is of the same order as the total particle number N , such that

1−N0/N ≪ 1, where N0 = ⟨n̂ϕ⟩.

The Hamiltonian can then be expanded in powers of δψ̂. The zeroth-order term corresponds to

the mean-field energy, and it simplifies when ϕ(r) satisfies the Gross-Pitaevskii equation. The

first-order term vanishes due to the same condition. To study the second-order contributions, it

is convenient to define a new field operator:

Λ̂(r) =
1√
N̂
â†0δψ̂(r), (3.28)

which describes particles transitioning from the non-condensed fraction into the condensed or-

bital ϕ(r). Using this operator, the second-order expansion yields a quadratic (Bogoliubov)

Hamiltonian:

Ĥq = EGP +
1

2

∫
dr
(
Λ̂† −Λ̂

)
L

(
Λ̂

Λ̂†

)
, (3.29)

where EGP is the mean-field energy, and L is the operator:

L =

(
ĤGP + ϕÛ∗ ϕÛ

−ϕ∗Û∗ −ĤGP − ϕ∗Û

)
. (3.30)

Here, the operator ĤGP is defined as

ĤGP = − ℏ2

2m
∇2 + VMF(r)− µ, (3.31)

which depends on the mean-field orbital ϕ(r) and chemical potential µ. The linear operator Û

describes scattering into and out of the orbital ϕ(r), and acts on a function u(r) via

Ûu(r) = (N − 1)

∫
V (|r − r′|)ϕ(r′)u(r′) dr′. (3.32)

To use the quadratic Hamiltonian (3.29), one must solve the Bogoliubov-de Gennes eigenvalue

problem:

L

(
un

vn

)
= ϵn

(
un

vn

)
, (3.33)

with the constraint that u(r) and v(r) are orthogonal to ϕ and ϕ∗ respectively. This could be

simplified by introducing the projection onto the subspace orthogonal to ϕ and ϕ∗, using the

projection operators

Q̂ = 1− |ϕ⟩⟨ϕ|, (3.34)
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Q̂∗ = 1− |ϕ∗⟩⟨ϕ∗| (3.35)

and replacing L by (
Q̂ 0

0 Q̂∗

)
L

(
Q̂ 0

0 Q̂∗

)
, (3.36)

This ensures that (ϕ, 0 )T and ( 0, ϕ∗ )T become orthogonal eigenvectors, which are typically

excluded from further consideration.

The eigenmodes of L′ can be classified into three families based on the value of ⟨un|un⟩−⟨vn|vn⟩:

■ 0 family: ⟨un|un⟩ − ⟨vn|vn⟩ = 0

■ + family: ⟨un|un⟩ − ⟨vn|vn⟩ > 0

■ − family: ⟨un|un⟩ − ⟨vn|vn⟩ < 0

The + and − family modes can be normalized such that ⟨un|un⟩−⟨vn|vn⟩ = ±1, respectively. The

0-family generally includes only the trivial condesate modes, which are not relevant. Importantly,

the sign of the family is unrelated to the sign of the corresponding eigenvalue ϵn. However, a

negative ϵn in the + family indicates thermodynamic instability [12], while a complex ϵn signals

dynamical instability.

Once the eigenmodes are known, the Bogoliubov-de Gennes approach allows one to compute

corrections to the energy:

EBdG = h(N)−
∑

+ family

ϵn⟨vn|vn⟩, (3.37)

as well as the depletion of the condensate:

δN ≃
∑

+ family

⟨vn|vn⟩. (3.38)
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Chapter 4

Numerical methods
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This chapter is dedicated to the computation methods employed throughout the thesis. We begin

be describing the exact diagonalization approach, with particular emphasis on the importance

truncation technique. We then present the procedure for sampling particles from the many-body

wave function. This is followed by a discussion on solving the mean-field Gross-Pitaevskii equa-

tion and the number conserving Bogolibuvo-de Gennes equations. The chapter concludes with

technical details regarding the programming language and libraries used in the implementation.

4.1 Exact diagonalization

In the one-dimensional system with Dirac delta-type potential (the Lieb-Liniger model), an

analytical solution is available. However, extending the system to two dimensions, necessitates

the use of numerical methods. A commonly employed approach in this context is the exact

diagonalization of Hamiltonian (3.14).

Any solution to the corresponding eigenvalue problem could be expressed as a linear combination

|Ψ⟩ =
∑
|n⟩

Cn|n⟩, (4.1)

where the coefficients Cn are normalized to unity
∑

|Cn|2 = 1. Given that the full Fock space

is infinite-dimensional, numerical implementation requires a truncation scheme.

We define B as a finite computational basis of Fock states, typically constrained by physical

quantities. A basis state |n⟩ ∈ B satisfies
∑
ni = N and

∑
mini = M where N is the total

particle number and M is the total angular momentum in units of ℏ. Thus, the numerical

calculation is performed in a finite-dimensional subspace F = spanB characterized by fixed total

particle number and angular momentum.

Diagonalizing the Hamiltonian within this subspace yields an approximation to the true eigen-

states of the full system.

A natural question arises: how do we decide what Fock states be selected for inclusion in the

computational basis B? The straightforward truncation strategies are commonly considered:

■ Single-particle cutoff : A basis state |n⟩ ∈ B is included only if ni = 0 for i > icut. Here

icut ∈ N serves as a cutoff parameter for the single-particle states indices.

■ Many-body energy cutoff : A basis state |n⟩ ∈ B is included if the total non-interacting

energy
∑
Eini is less than some threshold Ecut, where Ei are the single-particle energy

levels. In this case, Ecut is the tunable cutoff parameter.

While both approaches are conceptually simple, they suffer from a rapid growth in the size of

the basis with increasing icut or Ecut, which means, in practice, that computations are limited

to parameter regimes with weak interactions only.

Moreover, these methods are agnostic to the specific features of the interacting Hamiltonian.

As a result, they tend to include many basis states that contribute little to the actual physical
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solution. A more refined strategy, known as importance truncation [11], addresses this issue by

selecting basis states based on their estimated relevance to the specific many-body Hamiltonian.

The importance truncation method relies on the iterative construction of the computational basis

B. Suppose we are interested in approximating the ground state of the system. The procedure

begins by defining an initial, small basis B1 which may consist of just a few Fock states — or

even a single one. Solving the eigenvalue problem

Ĥ|Ψ1
ref⟩ = E1

ref |Ψ1
ref⟩ (4.2)

within this subspace yields a first approximation to the ground state, referred to as the reference

state, which takes the form

|Ψ1
ref⟩ =

∑
|n⟩∈B1

C1
n|n⟩. (4.3)

Next, we define a larger set Bs —the search space—constructed using one of the more naive

truncation schemes discussed earlier (such as energy or single-particle cutoffs). This set serves

as a reservoir of candidate basis states. The goal is to identify states in Bs that are potentially

important for improving the reference solution.

To do so, we assign an importance measure to each candidate state |n⟩ ∈ Bs \ B1 based on

first-order perturbation theory:

κn =

∣∣∣∣⟨Ψ1
ref |V |n⟩

En − E0

∣∣∣∣ , (4.4)

where En is the noninteracting Fock energy (Ĥ|n⟩ = En|n⟩ when V̂ = 0), with E0 corresponding

to the ground state. A new, enlarged basis B2 is then constructed by combining B1 with those

states from Bs that satisfy the importance criterion:

B2 = B1 ∪ { |n⟩ ∈ Bs \ B1 | κn ≥ κmin }. (4.5)

The process is then repeated iteratively, constructing successive bases B3,B4, . . . until conver-

gence is achieved—typically determined by checking that the computed ground-state energy Eref

stabilizes between iterations.

In practice, an additional parameter Cmin can be introduced to refine the calculation of κn. In-

stead of using the full reference state |Ψ1
ref⟩, one can define a truncated version |Ψ1

ref⟩′, constructed

by retaining only coefficients |C1
n| ≥ Cmin, followed by renormalization:

|Ψ1
ref⟩′ =

1√
N

∑
|C1

n|≥Cmin

Cn|n⟩, with N =
∑

|C1
n|≥Cmin

|C1
n|2. (4.6)

To verify convergence and assess accuracy, one must examine the sensitivity of the resulting

energies to the parameters κmin, Cmin, and the choice of search space Bs. In our calculations,

the values κmin = 10−5 and Cmin = 10−4 were found to provide reliable and stable results.

When constructing the search set Bs, it was found that applying an energy cutoff on the many-

body states is generally more effective than using a cutoff on the single-particle orbitals. The key
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Ecut size of Bs

200 36’943

400 1’921’885

600 19’481’375

800 100’500’179

1000 357’937’806

1200 1’008’552’286

Table 4.1: Size of the importance truncation search space Bs for increasing values of the energy cutoff Ecut.

reason lies in the fact that some crucial many-body configurations may involve only one or two

high-energy single-particle states. Such configurations can be completely missed when relying

solely on a single-particle cutoff, as the necessary orbitals may not yet be included.

Another drawback of single-particle cutoff schemes is the difficulty of reaching important orbitals

due to angular momentum constrains. For instance, a single-particle state ϕi with index i = 539

carries angular momentum 25ℏ, which is quite large. In order to construct a total many-body

state with zero angular momentum, such a component would require another state with nearly

equal and opposite angular momentum (or few states with smaller angular momentum). In

contrast, a state like ϕ516, which has zero angular momentum, can be included without changing

the total angular momentum and is thus more likely to contribute significantly to the low-energy

spectrum.

Table 4.1 illustrates how the size of the search space Bs grows with increasing energy cutoff

Ecut, under the constraint of total angular momentum 0ℏ and number of particles N = 6. This

exponential growth underscores the need for effective truncation strategies such as importance

truncation. Meanwhile, Fig. 4.1 shows how the computed ground-state energy varies with respect

to Ecut, demonstrating convergence behavior.

When computing the importance measure κmin, we must evaluate the matrix elements

⟨Ψ1
ref |V |n⟩ =

∑
n′

C1∗
n′ ⟨n′|V |n⟩. (4.7)

To make this computation efficient, we can exploit the structure of the interaction operator V̂ ,

which consists of a products of two creation and two annihilation operators â†i â
†
j âlâk. As a

consequence, the matrix element ⟨n′|V |n⟩ is nonzero only if the state |n⟩ can be obtained from

|n′⟩ by moving at most two particles between orbitals.

This observation allows us to significantly reduce the number of matrix elements we need to

compute. Instead of looping over the entire search space Bs, we can iterate over the states |n′⟩
with nonzero amplitudes C1

n′ in the reference state |Ψ1
ref⟩, and then generate all states |n⟩ that

are reachable from each |n′⟩ via two-body transitions. During this process, we can also track

the excitation energy of the candidate state |n⟩ to check whether it falls within the energy cutoff

defining Bs.
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Figure 4.1: Convergence of the ground state energy using exact diagonalization with the importance truncation

scheme. The left panel shows the ground state energy as function of the inverse energy cutoff 1/Ecut used to

define the truncation search space Bs. The right panel displays the relative error of the ground state energy with

respect to the lowest value, plotted as a function of Ecut. The results are shown for a system of N = 6 particles

at the hightest considered interaction strength, gN = 18 ℏ2/m. The importance truncation parameters used are

κmin = 10−5 and Cmin = 10−4.

In order to evaluate matrix elements ⟨n′|V |n⟩, we require the two-body integrals Vijkl defined by

(3.15). These integrals can be computed on demand and stored in memory for reuse through the

calculation. Furthermore, they may be written to disk at the end of a computation to be loaded

in subsequent runs, thus avoiding unnecessary recomputation and improving overall efficiency.

A crucial step in the importance truncation scheme—and in solving the many-body problem in

general—is the diagonalization of the Hamiltonian matrix. Since we are typically interested only

in the ground state, full diagonalization becomes computationally inefficient for large matrices.

Instead, the Lanczos algorithm offers a much more practical alternative. It is particularly well-

suited for large, sparse matrices—an advantage that applies here, as more that 99% of the

Hamiltonian matrix elements in our system are zero.

Using the Lanczos method, we were able to efficiently diagonalize Hamiltonians with dimensions

up to 300’000, enabling accurate ground-state approximations within a reasonable computational

time frame.

4.2 Particles drawing

To investigate the conditional wave function ψcond(r̄1, . . . , r̄N−1, r) we need to sample (i.e., mea-

sure) the position ofN−1 particles. In principle, this requires drawing samples from a probability

distribution defined over a D × N -dimensional space, where D is the spatial dimension of the

system (for example, D=2 for our system).

Instead of sampling all coordinates simultaneously, we adopt a sequential sampling approach,

drawing particle positions one at a time. The method begins by sampling the position of the
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second particle, r̄1, from a distribution proportional to the single-particle density:

ρ1(r) ∝
∫

|Ψ(r1, r2, . . . , rN−1, r)|2 dr1 · · · drN−1. (4.8)

Once r̄1 has been obtained, the next position r̄2 is drawn from

ρ2(r) ∝
∫

|Ψ(r̄1, r2, . . . , rN−1, r)|2 dr2 · · · drN−1, (4.9)

and this process continues iteratively until all N − 1 positions have been fixed.

However, evaluating such high-dimensional integrals of a many-body wave function is computa-

tionally expensive and generally impractical. A more suitable approach within the Fock space

formalism is to implement this sampling procedure with the aid of second quantization.

Let us denote the initial many-body wave function by |Ψ1⟩. The first particle position r̄1 is

drawn from the probability density

ρ1(r) ∝ ⟨Ψ1|ψ̂†(r)ψ̂(r)|Ψ1⟩. (4.10)

Once the position r̄1 is sampled, we construct a new (N − 1)-particle state by acting with the

field annihilation operator:

|Ψ2⟩ = ψ̂(r̄1)|Ψ1⟩. (4.11)

This new state |Ψ2⟩ depends explicitly on the previously sampled coordinate. The next particle

position r̄2 is drawn from the corresponding density:

ρ2(r) ∝ ⟨Ψ2|ψ̂†(r)ψ̂(r)|Ψ2⟩ (4.12)

and the procedure is repeated recursively. In general, the n-th position is drawn from

ρn(r) ∝ ⟨Ψn|ψ̂†(r)ψ̂(r)|Ψn⟩ (4.13)

with the n-particle wave function defined recursively as:

|Ψn⟩ = ψ̂(r̄n−1)|Ψn−1⟩. (4.14)

This yields a sequence of N − 1 sampled positions r̄1, . . . , r̄N−1, which can then be used to

construct and analyze the conditional wave function ψcond.

4.3 Mean field and Bogoliubov-de Gennes

Our goal is to solve the mean-field equation of the form:(
− ℏ2

2m
∇2 + Vex(r) + VMF(r)

)
ϕ(r) = µϕ(r), (4.15)

with a focus on two particular solutions. The first is the ground state, which is assumed to be

radially symmetric ϕ0 = f0(r). The second is a state carrying a single vortex at the origin, taking

the form ϕ1(r) = f1(r)e
iθ.
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To solve the Gross-Pitaevskii equation, we employ a self-consistent approach using a single-

particle basis expansion. Specifically, we search for solutions of the form

ϕm(r) =
∑

i, mi=m

ciψi(r) (4.16)

where m denotes the total angular momentum in ℏ (0 or 1) and in the sum we take into account

only those orbitals that have the angular momentum m, so mi = m. The coefficients are

normalized,
∑

|ci|2 = 1.

Starting from an initial normalized guess defined by the coefficients ci, we construct the matrix

representation of the mean-field operator

− ℏ2

2m
∇2 + Vex(r) + VMF(r) (4.17)

where the mean-field potential VMF is computed based on the current approximation of the

solution. Diagonalizing this operator yields a new set of eigenstates, and the state corresponding

to the lowest eigenvalue is used as the updated guess.

This iterative procedure continues until the chemical potential µ converges within a specified

tolerance. To improve convergence, we found it effective to apply a mixing strategy: instead of

replacing the old solution entirely, we update it using a weighted combination of the old and new

states. Empirically, using a mixture of 0.2 (old) and 0.8 (new) proved to work well.

Once the GPE solution ϕm(r) has been obtained, we proceed to solve the Bogoliubov-de Gennes

(BdG) equations:

L′

(
un

vn

)
= ϵn

(
un

vn

)
, (4.18)

where the transformed BdG operator L′ is defined by

L′ =

(
Q̂ 0

0 Q̂∗

)
L

(
Q̂ 0

0 Q̂∗

)
, (4.19)

with Q̂ = 1− |ϕm⟩⟨ϕm|, Q̂∗ = 1− |ϕ∗m⟩⟨ϕ∗m|, and the original BdG operator L takes the form

L =

(
ĤGP + ϕmÛ

∗ ϕmÛ

−ϕ∗mÛ∗ −ĤGP − ϕ∗mÛ

)
. (4.20)

Since the BdG equations are linear, the problem reduces to a matrix diagonalization in an

appropriate basis. We construct this basis from the single-particle orbitals ψi, representing

states as either (ψi, 0 )
T or ( 0, ψi )

T .

The matrix structure imposes angular momentum selection rules:

■ (ψi, 0 )
T couples to (ψj , 0 )

T only when mi = mj .

■ ( 0, ψi )
T couples to ( 0, ψj )

T only when mi = mj .

■ (ψi, 0 )
T couples to ( 0, ψj )

T only if the condition of the form mi = 2m+mj is satisfied.

These angular momentum constraints effectively partition the Hilbert space into independent

subspaces, allowing us to solve (4.18) in blocks corresponding to conserved angular momentum

sectors. Physically, these selection rules reflect angular momentum conservation in the system.
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4.4 Technical details

The numerical methods described in this thesis have been implemented in C++ with the aid of

the following libraries:

■ GSL - GNU Scientific library [20] - used for computing Bessel functions and their zeros;

■ Eigen [21] - for basic linear algebra operations;

■ Spectra [22] – used for its implementation of the Lanczos algorithm for sparse matrix

diagonalization. This library depends on Eigen.

Most of the figures and data visualizations were generated using Python, employing the numpy,

scipy, and matplotlib libraries. The data, along with Python scripts used to generate a large

portion of the figures, is freely available at [23].

The code used for solving the many-body problem using importance trunction, solving the GPE

and BdG equation is available at [24].
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Chapter 5

Results
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5.1 Quntities

We begin our investigation of the system by examining the energy as a function of interaction

strength, as shown in Fig. 5.1. This comparison allows us to assess the consistency between

the many-body (MB) and mean-field (MF) approaches. The calculations were carried out for a

system of N = 6 particles, and we have plotted the two lowest-energy states at fixed angular

momentum—referred to as yrast states. The many-body energies are represented by solid lines:

yellow for the yrast state with Lz = 0, and blue for Lz = Nℏ. The energy obtained from

the Gross-Pitaevskii equation is shown with black dashed line, while the Bogoliubov-de Gennes

corrections to the mean-field results are depicted using red dot-dashed lines.
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Figure 5.1: Energy as a function of interaction strength for the yrast states with Lz = 0 (yellow solid line)

and Lz = Nℏ (blue solid line), compared with the mean-field energy (black dashed line) and the Bogoliubov–de

Gennes correction (red dot-dashed line). The calculations were performed for N = 6 particles with a Gaussian

width of σ = 0.1R.

We observe that the mean-field results closely follow the many-body energies only at low inter-

action strengths, with both approaches exhibiting the same derivative at g = 0. In contrast, the

Bogoliubov–de Gennes (BdG) correction closely matches the many-body results across the entire

range of interaction strengths considered.

Another important figure of merit is the condensate fraction, which provides insight into the

degree of condensate depletion and indicates the range of interaction strengths where the Gross-

Pitaevskii (GP) description remains valid. We compute the condensate fraction for both Lz = 0

and Lz = Nℏ across the same range of interaction strengths, as shown in Fig. 5.2. The yellow

curve, corresponding to Lz = 0 , shows that the system remains mostly condensed. In contrast,

the Lz = Nℏ case exhibits significantly higher depletion, indicating that the vortex state tends

to lose more particles from the condensate compared to the non-rotating ground state.

We also calculate the condensate fraction using the BdG correction to the GP description, shown

as the red dot-dashed line. While it generally follows the many-body result, it noticeable deviates,

especially for Lz = Nℏ
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Figure 5.2: Condensate fraction as a function of interaction strength for the yrast states with Lz = 0 (yellow

solid line) and Lz = Nℏ (blue solid line), along with the corresponding Bogoliubov–de Gennes prediction (red

dot-dashed line). Calculations were performed for N = 6 particles with a Gaussian width σ = 0.1R.

Next, we examine the particle densities. In the mean-field approximation, the density is simply

given by N |ϕ|2, where ϕ denotes the macroscopically occupied orbital. From the many-body

solution, we compute the diagonal of the single-particle density matrix, which provides the

average particle density.

For the case of Lz = 0 and several values of the interaction strength, cross-sections of the

densities along the center of the system are shown in Fig. 5.3. The solid yellow lines represent

the densities obtained from the many-body calculation, while the black dashed lines correspond

to the mean-field results. We observe that the mean-field density closely matches the many-body

density across the entire interaction range considered. This agreement is consistent with the low

level of condensate depletion previously observed.
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Figure 5.3: Density profiles for several interaction strengths for the Lz = 0 yrast state, obtained from the single-

particle density matrix (yellow solid lines) and the mean-field approximation (black dashed lines). Calculations

were carried out for N = 6 particles with a Gaussian width σ = 0.1R.
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We now turn to the case of Lz = Nℏ, where we expect greater discrepancies between the mean-

field and many-body descriptions, as suggested by the condensate fraction shown in Fig. 5.2.

Indeed, Fig. 5.4 illustrates that as the interaction strength increases, the many-body density

(blue solid line) increases at the center of the disk. In contrast, the mean-field density (black

dashed line) consistently drops to zero at the center, reflecting the presence of a well-defined

vortex core.

The orbitals into which particles are depleted from the vortex state can be identified using

the Bogoliubov–de Gennes (BdG) approach. These are shown in Fig. 5.5, where we plot the

two most significantly occupied Bogoliubov modes. They indicate that particles predominantly

transition from the vortex state to orbitals with angular momenta Lz = 0 and Lz = 2ℏ, in equal

proportions—thus preserving the total angular momentum of the system.
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Figure 5.4: Density profiles for several interaction strengths for the Lz = Nℏ yrast state, shown using the single-

particle density matrix (blue solid lines) and the mean-field approximation (black dashed lines). The calculations

were performed for N = 6 particles with a Gaussian width σ = 0.1R.
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Figure 5.5: Density of the mean-field orbital (black dashed line) shown alongside the densities |v|2 of the two

most highly occupied Bogoliubov–de Gennes modes. These two modes have approximately equal occupation and

angular momenta Lz = 0 and Lz = 2ℏ, ensuring that the total angular momentum per particle remains at Nℏ
. Calculations were performed for N = 6 particles, interaction strength gN = 18ℏ2/m, and Gaussian width

σ = 0.1R.
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Even though the density is nonzero at the center, the presence of a vortex remains clearly visible in

the case of Lz = Nℏ. We now turn to a more subtle scenario, where the total angular momentum

lies between 0 and Nℏ. Intuitively, one might expect the vortex to be located off-center in such

cases. However, as shown in Fig. 5.6, the single-particle density matrix for Lz = N
2 ℏ does not

reveal a clearly defined vortex core—the averaged density obscures its presence.

Moreover, comparison with the stationary Gross-Pitaevskii solution becomes nontrivial. A vor-

tex displaced from the center would naturally rotate around it, making a time-independent

(stationary) solution inappropriate. As a result, no corresponding mean-field line is shown in the

figure.

To resolve the vortex structure in such intermediate angular momentum states, we must turn to

alternative methods. Specifically, we employ the position-measurement-based approach described

in Section (XXX), which allows us to extract more detailed spatial information beyond what is

visible in the averaged density profile.
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Figure 5.6: Density profiles for several interaction strengths for the Lz = N
2
ℏ yrast state, obtained from the single-

particle density matrix (green solid lines) and the mean-field approximation (black dashed lines). Calculations

were performed for N = 6 particles with a Gaussian width σ = 0.1R.

5.2 Vortex in the many body wave function

To identify the vortex structures in the N -body wave function, we employ the method described

in Section XXX. In this approach, we fix the positions ofN−1 particles, denoted by r̄1, . . . , r̄N−1,

and examine the resulting conditional wave function of the remaining particle:

ψcond(r) = Ψ(r, r̄1, . . . , r̄N−1). (5.1)

This function provides insight into the phase and density structure of the full many-body wave

function, conditioned by specific measured positions r̄1, . . . , r̄N−1.
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We carry out the position-sampling procedure for a system of N = 6 particles at an interaction

strength of gN = 18ℏ2/m. This yields multiple sets of particle positions, from which we construct

the corresponding conditional wave functions. Examples are shown in Fig. 5.7, where each

configuration is decomposed into its density and phase components. Panel (a) presents five

examples for Lz =
N
2 ℏ, while panel (b) shows five examples for Lz = Nℏ.

(a) (b)

Figure 5.7: Conditional wave functions for Lz = N
2
ℏ (panel a) and Lz = Nℏ (panel b). In each panel, the

left column shows the density and the right column shows the phase of ψcond. When present, vortices appear

off-center; this positional variation is more pronounced in panel (a). Calculations were performed for N = 6

particles, interaction strength gN = 18ℏ2/m, and Gaussian width σ = 0.1R.

In most realizations of the sampling procedure, a vortex is clearly observed; however, its position

varies between different sets of measured particle positions. The vortices obtained in this manner

are dynamically stable in the sense that, when the conditional wave function is used as the initial

state in the time-dependent Gross–Pitaevskii equation, it evolves in a stable manner. For weaker

interactions (gN = 6ℏ2/m), the vortex core rotates smoothly around the center of the disk

with minimal disturbance. For stronger interactions (gN = N
2 ℏ), the evolution becomes more

perturbed. An animation of this time evolution is provided as supplementary material in [25].

If one averages the density profiles obtained from many conditional wave function realizations,

the result converges to the single-particle density matrix. As we have already observed, this

averaged density does not reveal the presence of a vortex, due to the large spread in vortex

positions across different realizations.
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The case of Lz = Nℏ, shown in panel (b) of Fig. 5.7, is somewhat different. The vortex images

closely resemble the mean-field vortex structure, but with a slight offset from the center. This

is consistent with the nonzero central density observed in the single-particle density matrix.

The spread in vortex positions in this case is likely related to the Bogoliubov–de Gennes modes

discussed earlier.
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Chapter 6

Conclusions
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In this master thesis, we investigate the emergence of a quantum vortex—an object best under-

stood within the framework of the mean-field approximation—as it appears in the solution to

the many-body Schrödinger equation describing interacting bosons.

Before focusing on vortices, in Chapter 2, we reviewed the foundational concepts of many-body

quantum mechanics, beginning with the structure of theN -body wave function and the symmetry

constraints imposed by indistinguishability of bosons. We introduced the single-particle density

matrix and derived the Gross-Pitaevskii equation (GPE) for systems with non-local interactions.

We then explored how solitons arise in the one-dimensional Lieb-Liniger model, particularly

through the analysis of conditional wave functions following simulated position measurements.

This chapter concluded with the introduction of quantum vortices as macroscopic excitations

described by the mean-field orbital obtained from the GPE.

In Chapter 3, we presented our model: a two-dimensional disk confining interacting bosons.

We reformulated the problem using second quantization and introduced the Penrose-Onsager

criterion for Bose-Einstein condensation, based on the eigenstructure of the single-particle density

matrix. A Gaussian-like repulsive interaction potential was defined, and we emphasized that

this choice conserves the total angular momentum of the system. We also briefly introduced the

number-conserving Bogoliubov–de Gennes (BdG) formalism, providing the expressions for the

energy corrections and condensate depletion.

Chapter 4 focused on the numerical methods used. We described the exact diagonalization

technique, how we constructed and truncated the computational basis, and how this process

was improved via importance truncation. To ensure the reliability of our results, we presented

convergence plots of the ground state energy as a function of the cutoff energy. A key com-

ponent of this work—the iterative "measurement" procedure used to extract particle positions

one by one from the many-body wave function—was described in detail. We also outlined the

numerical methods used to solve the GPE and BdG equations, and concluded the chapter with

implementation details such as the programming language, libraries, and the source code.

In Chapter 5, we presented the main results of our simulations. We compared energies and

condensate depletion between the mean-field and many-body descriptions, and analyzed den-

sity cross-sections at different total angular momenta. We visualized the BdG modes associated

with the single-vortex state, showing how particles are excited out of the condensate. Most

importantly, we demonstrated the emergence of vortices through conditional wave function mea-

surements, revealing random vortex positions in each trial. We observed that vortices typically

appear off-center and linked this spatial spread to the structure of the BdG modes.

This work opens several avenues for further research. Preliminary investigations (not presented

here) suggest that vortex lattices can emerge at angular momenta exceeding Nℏ, though these

results require proper convergence checks and more systematic study. The dynamics of vor-

tices under the time-dependent Schrödinger equation remain largely unexplored and would be

a natural extension. Moreover, thermal effects are entirely absent from this analysis. Including
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temperature effects—particularly in two-dimensional systems—would allow one to explore phe-

nomena such as the Berezinskii-Kosterlitz-Thouless (BKT) transition. Investigating such effects

might be feasible using alternative geometries, such as periodic boundary conditions.

Finally, since we have demonstrated that the measurement-based approach successfully reveals

vortex structures—just as it did for solitons in one-dimensional systems—there is strong moti-

vation to apply this technique to study other emergent quantum structures, such as quantum

droplets, in future work.
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Interaction integral
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We derive the formula (3.24) for interaction integrals, we start from the general form

Vijkl =

∫
ψ∗
i (r1)ψ

∗
j (r2)V (|r1 − r2|)ψk(r1)ψl(r2) dr1 dr2. (A.1)

The single particle wave function ψj decomposed into radial and angular parts

ψj(r) = fj(r)e
imjϕ (A.2)

and the gaussian interaction potential

V (r) =
g

σ2π
er

2/σ2
(A.3)

could be inserted into (A.1). We use polar coordinates to write the distance between particles

|r1 − r2| =
√
r21 + r22 − 2r1r2 cos (ϕ1 − ϕ2) and to use as integration variables:

Vijkl =
g

σ2π

∫
dr1 dr2r1r2fi(r1)fj(r2)fk(r1)fl(r2)e

− r21+r22
σ2 (A.4)

×
∫

dϕ1 dϕ2e
i(−miϕ1−mjϕ2+mkϕ1+mlϕ2)e

2r1r2
σ2 cos (ϕ1−ϕ2). (A.5)

The two integrals over ϕ1 and ϕ2 could be solved by simple change of variables, keep ϕ1 and

defining ϕ = ϕ1 − ϕ2 the integral (A.5) now becomes∫ 2π

0
dϕ1e

iϕ1(−mi−mj+mk+ml)

∫ 2π

0
dϕeiϕ(mj−ml)e

2r1r2
σ2 cosϕ = (A.6)

= 2πδ
mi+mj

mk+ml

∫ 2π

0

[
cos (ϕ(mj −ml)) + i sin (ϕ(mj −ml))

]
e

2r1r2
σ2 cosϕ =

= 2πδ
mi+mj

mk+ml
× 2

∫ π

0
cos (ϕ(mj −ml))e

2r1r2
σ2 cosϕ =

= 4π2δ
mi+mj

mk+ml
I|mj−ml|

(
2r1r2
σ2

)
,

where we took advantage over the fact that imaginary part of the integral over ϕ vanishes and

with the integral representation of the modified bessel function of the first kind

Im(x) =
1

π

∫ π

0
ex cosϕ cos (nϕ) dϕ. (A.7)

The total interaction integral now takes the form of double integral over r1 and r2 from 0 to R

and could be computed numerically

Vijkl =
4πg

σ2
δ
mi+mj

mk+ml

∫
dr1 dr2r1r2fi(r1)fj(r2)fk(r1)fl(r2)e

− r21+r22
σ2 I|mj−ml|

(
2r1r2
σ2

)
. (A.8)
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